Centrally Extended Jordan (∗)-Derivations Centralizing Symmetric or Skew Elements

نویسندگان

چکیده

Let A be a non-commutative prime ring with involution ∗, of characteristic ≠2(and3), Z as the center and Π mapping Π:A→A such that [Π(x),x]∈Z for all (skew) symmetric elements x∈A. If is non-zero CE-Jordan derivation A, then satisfies s4, standard polynomial degree 4. ∗-derivation s4 or Π(y)=λ(y−y*) y∈A, some λ∈C, extended centroid A. Furthermore, we give an example to demonstrate importance restrictions put on assumptions our results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centralizing automorphisms and Jordan left derivations on σ-prime rings

Let R be a 2-torsion free σ-prime ring. It is shown here that if U 6⊂ Z(R) is a σ-Lie ideal of R and a, b in R such that aUb = σ(a)Ub = 0, then either a = 0 or b = 0. This result is then applied to study the relationship between the structure of R and certain automorphisms on R. To end this paper, we describe additive maps d : R −→ R such that d(u) = 2ud(u) where u ∈ U, a nonzero σ-square close...

متن کامل

Rank-width and Well-quasi-ordering of Skew-Symmetric or Symmetric Matrices (extended abstract)

We prove that every infinite sequence of skew-symmetric or symmetric matrices M1, M2, . . . over a fixed finite field must have a pair Mi, Mj (i < j) such that Mi is isomorphic to a principal submatrix of the Schur complement of a nonsingular principal submatrix in Mj , if those matrices have bounded rank-width. This generalizes three theorems on well-quasi-ordering of graphs or matroids admitt...

متن کامل

Nearly Generalized Jordan Derivations

Let A be an algebra and let X be an A-bimodule. A C−linear mapping d : A → X is called a generalized Jordan derivation if there exists a Jordan derivation (in the usual sense) δ : A → X such that d(a) = ad(a) + δ(a)a for all a ∈ A. The main purpose of this paper to prove the Hyers-Ulam-Rassias stability and superstability of the generalized Jordan derivations.

متن کامل

Jordan Derivations of Prime Rings1

1. Given any associative ring A one can construct from its operations and elements a new ring, the Jordan ring of A, by defining the product in this ring to be a o b = ab+ba for all a, b^A, where the product ab signifies the product of a and b in the associative ring A itself. If R is any ring, associative or otherwise, by a derivation of R we shall mean a function, ', mapping R into itself so ...

متن کامل

On Jordan left derivations and generalized Jordan left derivations of matrix rings

Abstract. Let R be a 2-torsion free ring with identity. In this paper, first we prove that any Jordan left derivation (hence, any left derivation) on the full matrix ringMn(R) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. Next, we show that if R is also a prime ring and n 1, then any Jordan left derivation on the ring Tn(R) of all n×n uppe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2023

ISSN: ['2075-1680']

DOI: https://doi.org/10.3390/axioms12010086